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ABSTRACT: Two of the most commonly used methods, the Trapezoidal Rule and the A
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1. Introduction

This paper is concerned with the numerical integration of differential systems,

A l /(. X), 0I.i)

by linear multistep and one-leg methods. On a uniform grid n --- h. n - 0. I. h > 0, a

linear multistep (MS) method of step number k,

, ,,fxt+j-h y /,+..+,=o.(1.2)
J =o J-0

is defined by a set of constant coefficients la,, 01}, j = 0). k. Throughout this paper it will

be assumed that (1.2) is normalized by the constraint

1~ - . (1.3)
j=O

Using the familiar polynomials p( ') = 1 cms and ( ) - /" . and the shift operator
,=0 i) I

E defined by x,.+, = Ex., the method (1.2) can be written in the form

p(E)x,-ho(E)f(t,, x,,) = 0. (1.4)

with the normalization

o(E)l I. (.5)
n

On a variable grid fIt), t, = t(, + I /It., n = 1. 2, ... 1, all or some of the coefficient,; n. P,
normally depend on n. For practical purposes, the MS-method in the variable step cawe is

often written as

A kX, %,,., +,-',,+k X, ,,,.f(',,,+ . ,,,4,) = () (1l.6,)
E= XP141.6

with the normalization

k

E i . (1.7)
1=0

Equivalently it can be expressed in the form

pnr,-h +A",Vf(t,:. V") o () (I.)
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and thc nortuafization as

where thc operators I),, and a,, are defined by

1=0 /=

For theoretical dlerivations it is preferable to write the AIS-metlhod it) termns of ai step other

than the forward-most step, h,, 4 k = n +A as is done in parts of this paper.

With every MIS-method one can associate its tine-leg (OL) "twin" or counterpart

wvhich. for variable steps, is defined by

and results front the AIS-mnethod (1 .8) by permuting f with the operator ri,. OL -methods

were first introduced in 151 for theoretical purposes hut were found to be useful as integration

methods in their own right I V)

Our aim in this paper is to look for methods with \cry ,trong stability properties.

More specifically, we seek

methods which produce bounded solutions wheneser applied to the test equation

x Ar).. Re A&) < 0 (1.12)

using any stop sequence In$

Asking for stability with arbitrary step sequen~-es may seem to be too strong a requirement.

However, we show that there do e'xist miethods having this property and thus the above

requirement is reasonable. For other methods stability results can be proved hilt only under

rather complicated assumptions on the interplay between the time depiendence of the problem

and the step changes, 113, 201.

It was demonstrated in 1191 that, if formulas are implemented in the nmultistep form.

then unfavorable combinations of variable steps and variable coefficients in the equations can

lead to instability. As a simple example of this, consider thc Trapcroidal Rule:

2
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which when applied to (1.12) gives

11+1 + -fln+A(1n)JjIh+ I At,+ W)

Let h,, and hi 2 -+ 4 and choose A () such that A (r,,n) I - and A U0.+t
2 1n+ n

Then, X2,- = (-2)"xO,. i.e. the rrapezoidal Rule is unstable. The Implicit Midpoint Rule

(one-leg 1.twin" of the Trapezoidal Rule).

flflfl= 2 " 2 " f

on the other hand gives

+12 2 2

so that for all problems ( 1. 12) we ha ve I x,, + I In

Recall that. for constant steps, linear mtiltistep methods and one-leg mcethods ha% e

similar stability properties 161 but. a% stated before, with variable steps this is no longer the

case. Thus, although we somectimies write formulas in multistep form it should be understood

that they are to he implemented in oiw-Ieg form.

For constant steps and constant V's, our stability requiremenit reduces to .4-stability.

'rherefore. the order of the methods we are looking for cannot exceed two and it is natural to

restrict our attention to two-step methods. Observe that. for evei v given step ratio r. there~

exists a two-parameter family of two-step second-order formula%. To start with, consider

formulas of this class whose coefficients depend smoothly on r. Choosing geomeotric ocll

sequences and related time-dependent problems we show, by expanding around r = . that

there exists at most a one-parameter family oif colistint-step formula', which C;1n

smoothly be extended to variable steps in such a way as to satisf\ our stability

requirement.

This result is demonstrated in Section 5 and was first given in 1201. The one -paramneter faniil\

of constant-step formulas in question happens to be exactly to set of those second-order

two-step methods which are A-contractive in the max-norm, which in turn is the same as, the

set of method% which are ,4-contrictivc in a monotone inner produict norin (i c.. o-tbl ih

diagonal G).



Let us recall this termin) logy. Wich any s(dutiof t 1,,I of the difference equation we

associate the sequence J.\', where ,, = (v,, 1t,,4 .. ,,) We say that a method i%

stable at q - hA if it p roduces boundled solutions when applied to the test[ vtatlon

X|

.= Ax. AtC; (1.13)

it is said to be contractitv at q = hX with respect to a given norm I1 if I.,, ! II II

1181. The set of stable q's is called the stability region S of the method and, similarly, the

contractivity region C is the set of q's at which the method is contractive The method is

called A-stable (A-contractive w.r.t. a given norm) if t' left half-plane is contained in

S(C • ). anti A)-stability (A,4-contractive) if the negative real axis is contained in S( C[. )

:or every ,4-stable method there exist% an inner product norm in which the nuethod is

A-contractive, [I. Note that when a onc-leg method is applied to (i 12), then

IX,,+I !5 jX,, 1 follows for all n and for any A) a, In p h; 1hAU,)9cC

Contractivity in the max-norm was first investigated in 1I,11 for Adam%- and Runge-

Kutta methods In It. 21 contractivitv in i, rtain polygonal norm,s was studied to produce

variable-,tcp ,tability rtsults for hack%%.ird dilfcrentialion methods (Contra 'tisity for di sipa-

live nonlinear systems in innet product norms ()-tabulit*,) was inlroduced in 15.61 and further

analy/ed in 17-Ill. 11.51-Il 91. ('Cntractivity re,,ult, for Runge-Kutta mcthods are given in

13,4.121.

As mentioned above, the stability analysis using geometric step sequences led to

con.tant-step methods which arc .4 contractive in the ma.u-norm and in a monotone inner

product norm. It is therefore natural to also look for virt]bl'. sttp formtulas, \which arc

A-contractive in tlhcse norms. It turns out that

for any step ratio r, there exists a one-parameter family of .4-contr.actie nethod,.

Hence we have now a) characterized the set of constant-step formulas for which variable step

stability results might exist, and h) given extensions of all of thc; formulas to variabhle steps

which actually do preserve stability. We get the same methods using either the max-norm or

diagonal G-matrices. Ilowever. the (;-matrix depends on the formula parameter and for every

parameter value (i.e. any fixed-step formula in the family) we find a unique variable-tep

extension which is A-contractive in the same G-norm as the constant-step formula in question

Observe that. with thi, extension, all results concerning error bound% for nonlinear systems

carry over immediately. 1"he max-norm, on the other hand. does not depend on the method,
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and therefore stability is preserved even if we pick an arbitrary A-contractive variable-step

method at every step. The max-norm results were first given in (201 and are presented in

Section 3. while the results using the G-stability approach were given in [l01, and are

presented in Section 2.

In Section 4 we analyze A0 -contractivity for variable steps and give variable-stcp

extensions for all constant-step formulas which are Ao-contractive in the max-norm. We also

briefly discuss the selection of particular methods from among the one-parameter family of

A-contractive methods. Finally, we rewrite all methods in a practical parametrization and list

their error constants.

. . . . . . . .. . . .. .
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2. A-contractivity in the G-norm

Consider the general variable-step k-step formula

with the normalization

-~ = I (2.2)

For k _ 2, the coefficients a,. P, depend on the step ratios

r,, = h,./, .,+)- I. = 2. k. (2.3)

where h,, = 'n-tlalthough for simplicity in writing they are not stubscripted here. and h, is

some homogeneous function of the first degree of the h,,,,. 1 = 1 ...K. the formula (2.1)

can be written using the difference operators

o.,, := ,, .,,+, - ,,:= , ,,,, , ,(2.4)

where p = P,, o o, . In terms of these operators, (2.1) becomes

px , = i, (2.5)

Two possible implementations of (2.5), as applied to

.x = f(r, V). (2.0')

are the familiar linear multistep method

pxv, = /, yf(i,,, ,) (2.7)

on the one hand and the one-leg method 15,61

px,, = hf(nt,,. a,,) (2.8)

on the other hand. Necessary and sufficient conditions for the one-leg method to be of order



of accuracy p were given in 1 101 in terms of the moments

,,(p,) I n r> M,.(O) 3,i , ' .0, 1 (2.9)
J.0

where t,j = 1,, + Tji,, j = 0. k, and t,, is some reference point. 'Ilie method (2.8) is of

order p iff, in addition to the familiar linear constraints

AI,.(p) M i(c). I = 0, I. .. p (2.10)

for pth order accuracy of the muiltistep~ method (2.7), the nonlineat conditions

M. I(,a) = IM 1(oi .= I. p 2.1 )

arc satisfied. For p 1 , (2. I0) for r = 0 and I repre.nts thle cs,.kien'.v condition%

p(1) = A. =O

(2.12)

A A .

the second of which coincides with (2. I I for , = I in this case. Also, for r = 2. (2.1 1) is an

identity and thus the condition

'iT 2 13' j (2,131

added to (2.1 2) guarantees ,second-order accuracy for botlh t2.7) and (2.8)

Consider now the general two-step formula. ix'. (2.1) for A t: 2 with I '? .

I as TI.,= 0. and with To r 0 .,. 2 = T.,, defined by

1, to+I - (,l = - ' t,

(2 14)
h., 2 (n+=1 r. 4_,.1 h : ,,.
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II this case the cOlSiste'cy cotltnditins (2. 12) lecorni

p( I --- ,= 4' i4 l + (I.

(2 15)

,tljTll + r -1 I

In addition, the constraint

is being imposedl for the purpose of pinning down h,., and (,cc (2.24) hreafter).

Relation (2.10) is reminisk-ent of tli first-order ConsliS.;tenlc', conditio l (2.12)) lit is equiatcLt

it) that condititon only in the case of equal stelp,. ve 1I /1,,:, 1, = i,. = / and

0= 1, I.

From (2.A5) and (2.16) it lollows that i(. ) '(.)= (:) rt:)- for

(.+ I )/'(s - I -- ,- (ve as .l - i h re r(:) I- (: .l ',(,k : l ,: -- : l ,t : ) and

= (. + I)"(:- I). lnce there cxis! quarntitie, ab, mi, nd ,uch thaii

4 - +2 17

and

2 +, ,- I) I + 1 4- (J CM

=I(. /~ 1(1-h). (2.1IS)

o -) ? 1 -1 It ,-(a +
2 " 4

fly (2.12). (2.13) and (2.18) the first- and second-otder accuracy cont raint can he rewritte'n

as

(C + I)T, + (C- It = 2. (2 10)

(C + I)r + ('-I )r = (I + )( + i,j) 4- (a + ct22)



The variability of the step size can he represented by the parameter

41 := ('(-r, + T,)/2 (2.21)

which vanishes for -:qual steps. From (2.19) and (2.21) we get

72 -To = 2(1 n). (2.22)

The second-order accuracy condition (2.20), which is equivalent to
2

cI(r 2 + -ro) + (T 2-To) I + 2(T, + T()(Tr-T o ) = 2(I + h)(" 2 4- To) + 2(a + C)(T 2-.r,,),

can thus be rewritten as

C[(4a 2 ./c 2 ) + 4(1-r) 21 + M(I-a)n/c = 4(0 + hNo /c + 4(a + rO(I-,).

or

(n -a2)(l -cI ) = ha + a(l.1 -n0.

For a = 0 (equal steps) and c 0, this last condition reduccs to a = 0. anrd for (I -n )#0 it

can be written in the form

9_+ hb I -<' ( 23

From (2.14), (2.21) and (2.22) it follows that

C

To= I---- (2.24)

h,, 1-- 1?,+2 / T , i( - )

The formal algebraic condition for A-stability.

Re 1,)/o( ') _ 0 for ! I 1.

is equivalent to

Re r(:)/.iW(:) > 0 for Re > 0,

i.e. that r(z)/s(z) be a positive function 19 1 here r(:) = 2(: + i) and i(:)
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zt: .+ 0 + az + h. Front (2.1 7) it follows that this Conidition is satisfied itf

a > 1), b > 0. (, > 1 (2.25)

An interpretation of the condiltionl (2.25) a% an actual (not just formnal) stability result is given

in Section 5 hereafter. It is useful in the following to carry out (tic invecstigation ofi

A-contractivity subject to this constraint.

To analyze A-eontractivity of (2.1) in the (;-ntornl iccall 171 thait the detcrmination of

a G-niatrix is related to dcofn ipi 'sit ions of the form

IV
Re lr(z sMz) (I ny: + F0101 + n10x, + 1i (:1J + I4 I: 1 2.261

2

where it: Re ni > 0, i,, > 0, and are linear fund ons. In fact,

G.r P. (2. 27)

where

G I

Note thatI G is positive definite. In homogenotis coordinates P corresponds to the Moebiuis

transform z (~+I)(-I.Put for brevity,

I gg ' 2 1

We may write (2.26) in the form

Re -!r(:)s(z) 1, . z2 (G+H(,: : (2.24)
2 2

where H is a p~ositive semi-definite matrix, the element% oif which are determined by the

polynomials i/.,

G=2g 12 9 22] hi 12 0.

912 922 0 0 0 0
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One decomposition of the form (2.26) is easily found, namely

Re[lrz) z)I-ReI(:+ 1+ a + =1: + c 1 + (a( + h)t + a1:1" + bc.

In this special case we obtain,

A = + ;.] . = [ ac + ]

G ( ) )

We are interested in all possible decompositions ol the form (2.26) or, equialently. (2.28). It

follows from (2.28) and the form of G and II that h .ll + 2i ., c. are the saic for

all such decompositions. Ilence.

hl = h, g = , , = I, .g 1,112 = a. 2h1  + 0C + /-gll

A
In addition to this, we have the positivity conditions for ( and II Put for brevity g, =

Then

A [ ,
G= ( .t' '2.29)

and

, - ( + + l-el 2.310)

A
The matrix G associated with (; of (2.29) is

I (l+g-2c I - (2 31

I-.q I -i , , +*

it is subject to the constraints g > c2 anti (2.30).

Global A-contractivity (and thus ,4-stabilitv) results are obtained. I or all solutions of

monotone nonlincar systems 161 generated by vaiiable-step onc-leg mchods of typ' 2.S), if

for all n > 0 the formula (2.1 ) is A-contractive in a G-norm with a 6 which is tidependent of n

(i.e. of the step ratio). For G of (2.31) to he independent of ,, g and c must he conlanti

The latter mcans that the difference operator p defined by (2.4) ik constant with respect to ?1,

From this point on the analysis will he testricted to seconmid-order formulas, i e.

formulas for which (2.23) holds. Since in this case a 0 if rv 0, (2.36) implies that
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g-c2-b(O) = 0 and that

h(a) + a(a)c-g + r -1 ao)j . n -- 0.

Hence h(,t) is continuous at a = 0. From (2.23) it follows that

h(O) = I -c-c lin (,',)

i.e. lir (a/a) exists. Since a > 0 for I t I << I because of the .4-stability requirements, it

follows that lim (a/a) = 0 (since the right limit is > 0 and the left limit is < 0). Hence
b(O) I-< 2 0

M() = 1 = I. and the only possible choice for G is

G 0 < c < . (2.32)

a diagonal matrix.

If in (2.30) one lets g = I and uses the second-order accracv condition (2.23) to

express ac in terms of h. a. and c 2 then, in this case, (2.30) become,;

' h
l-n)a(l-ci--_--_- .. > ) (2.33)

" -n

Therefore, the only second-order methods which are A-contractike in a fixed G-norm for

arbitrary step ratios are defined by
a(a) -c' 2,

HN) =(l-c(- ) 2 (2.34)

c(n) =c=corrsf. 0 < C < I.

Another way of arriving at the one-parameter class of methods (2.34) is to observe 1101 that

for any. fixed c the equation (2.23) defines a one-parameter family of straight lines in the

plane with cartesian coordinates (ac, h). The envelope of this family is given by (2.34). As

mentioned above, in order to have a G-norm independent of n, the difference operator p must

be fixed,
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3. A-contractivity in the I -norm

In the preceding section it was shown that the class of all s'cond-ordcr two-step

formulas with variable steps which are A-contractive in the G-norm is defined by (2.34). Here

it will be proved that this same class also represents all variahle-step p = A = 2 formulas

which are A-contractive in the P -norm. However, as will be seen, the requirement that the

operator p he constant with respect to n which had to hc imposed in analy/ing A-contractivitv

in the G-norm may he dropped in studying the same property in the ,-norm.

Let h- := h.+1 = I h_ := /Ih = n++2-t+, andih :h (t+ + h-). Then" 2

one has h+ = JI(I + F) and h- = h(I-r). where r = (h--h-)/ 2 h, -I < t < + I" u.

E = 0 for equal steps (h- = h ). For bounded step ratios, one has the following exprcssiow

for the first and second central divided differences of any sufficiently smooth function x(t):

X(
__

t ) )  2 I-(1 + r)2x() ,+) + 4x(, 1 + tI-)x(F,,+)]=x( ) +0(h2).

t3 I)

20, 2I- )h

8t 2  ( I - 2 2 2"'

If unsubscripted quantities are assignc to t,+. then one can write :i n( i miali/C d aMst/ for a

two-step formula in divided difference form:

It V + III h - + %!' + * ii . - , '
!  0 (3,2)

In order for (3.2) to be coniistent (of order of accuracy p = I ) it must he satisfied cxactly fo r

x(t)--I and x(t) = t. rhi% is the case iff u0, = 0 and it = I. Ihe class of all consistent

formulas can thus be written in terms of the three paramcters t = U,, v = t'. and w = r, as

follows:

+ - (I+2  x ) 0. (3.3)

2.

ith-1 + uI2 It + %,I + ---/I 'n 0=1

The p - 2 accuracy condition, gottcn from suhstit|tling .v(f) = 12 into (3.3). is simply

u =v. t3 4)

If from (3.1) one substitutes for the divided differences and groups term% one [inds the



following expressions for the formula C'Ollfiew icn

-l) IS', p 0 ' ':

,= -l / I I-2p. (. 5)

where

2f -+ 2u + i-2,t
2( 1 -- r2 ) 2( 1 -,)

(3.I + -

-- 2r,+2w lgv-,

2(l-) 2 -)

Two identities are implied by lh'es definitions:

I - 2,' -2,1,

)0 -v

Note that the normalization is again (2 2). .
/(I

The class of formulas defined by (3.5) and (13 6) ik the ame a, that defined in ternl

of the parameters a, b. c by (2.1I9). The transformation (i. v, K)--,. h. ,) and that (if

related quantities can he found by requiring that , ..... and kh. -- ... 'h. hiret

= ,,. One obtains the relations

a = 4€-c =4

h' = 4 -I

C = S,

n -2y = 1-2A. 3.X)

"h = h/ 2S.

2 = 2(l+r)A.

In the prescnt parametrization, r(z) = 4(Az + y) and .t(:) = + 4.: + (4,,s- I Il%

applying the result of Example 2. p. 13 of 191 to T(:)/r(:) one find-, lie formal .4 -,tahily



conditions

A > 0I.

I
4 

9

01 < < 46A.

It wa proved in 118 that it multmitep formula i, .4,,-Contractis, ein the max norm

(fI-norm) iff

(14 > 0. , < (). 0=(. .k

(3 I(l)

A formula is A-conaracti'e in (he max norm if[ both (3 I0) and

I +I R+(q < . 0 < ,/< + .. ( I

arc satisfied. where

R = 1,,t + ,+ i ,i :. = +, . A-I. (3 i.)

and wherc the quare Troots are positive by d'fanition I or A 2 it I% l'.iilc t1 reduc, t I I)

to a condition just involkinp the formula 'flicinst, ilt fact. R,, + R 1 ] 1

2ROR < I-R-R, -o 4R;R- < I-R;-R'C. Ilh, l.,t icqually IVitng I10iti,'. I hi,

latter is in turtn equivalent to a condition of the form p, + l, -! pj _ .4 0. 11n '.s h

Po 0 0 by consistency and p, - 0 by (3.10) I herfor . ;I two--iep formula i% .f-cotrakti

in the max noirm iff both (3. 1O and

, , 4 I /I,)

p1  = (,, - f,' 4 ,,,(I(, - + + ,) - 2,,(0 4 '. _ ( ( i

hold After subslilulion front (0.5). a calulation gis ,.s 1hv contliim

2 1
Pt -y (A r)(4,p- I )-4(y4 A. > 0I( 14)

2

which is equivalent to (0.13). ising the i ons .4 -, A .'( I -1 1.-/1 I - lld

C : (I + F 2 )/2( 1 -1) and the second-order accuraty condition (1 4). tint- hat; = .4 6 ,1



.5C + A v. 4 v + 8w. and~ Cs ( + 4 % Anothei calculationt t.idds 6~-

_-4 . _B V2. 40-1 4Av + 411w-I. 1/40%.-1, = Il -) I. a mtIl t hus (3.14) f in a IlI
4
takes the formn

This last condition is satisfied iff w -(
12B) -(2A 'PBv-. I g. Of

As will be shown in (he nuxt section, (3 1 0) implies that (11 the paraihoiI; (15;0a only the arc

defined hv

F < I. - I < 1 . (3 1 Sh)
- 2

corresponds to .4-coritraCtive method%. It can he %erificl. h% uring (lte ransforniation 03 8),

that the class of second-ojrder formulas defined bv (2.34) is the sauine as that dt-fined bv (3.3),

(3.4) and (3.15).

Reman~rk: Thec use of the 1,-normn is nat uua since it is the onix norm in whichl all (if

the formulas defined by the inters al (.1. 15hi), indlins' its entdp 'juts the Iraupe/idal R ule'

(= (I + 0)/2) and the two-step Trape/oidal Rule 0, v=), are sirmultaneously .4 -contractix c

(1201, Proposition 2.4).



4. A10 -conlractivly and -wummary of methods

It was proved in I 181 that, in the ~'-norm, the formiula (2.1 i% a) coniractive atq=

0 utf

a ! 0. j0. k- I, Q > 0, (4.1)

b) contractive at q = iff

and 0) A(-contractive iff both (4.1 ) and (4.2) hold (as stated earlier). For the class; of

formulas with p = k = 2 defined by (3.4)-(3.6). (to !5 0 andi t, < I) yield

< ,< I+(4.11

The condition n2 > 0, which is equivalent to v > - (I - 0/2. ks implied by (4.3). In discussing

(4.2) one distinguishes four cases depending on the signs (if ji andl 13 First note that fil, 0

if f

+~
< 2

and I~~0 iff

Case 1: For flo 0  an ? one ha 20,, + I >- 10 iff

>l+r _I- r t1b.
-- ->- k -- 6)

2 2

Cas!e 2: For f0 < (0 and 4q 0 f 2 + ,-i I > () iff

'> I + ,.(4 7
- 4

But (4.7) and (4.4) require that

2+
+ rV<



which imtplies r > (I + ) V 2. I his lat ter conditIion is incomnpa tI ihe % it Ii (.1 3), so I hatI Case 2

does contribute any feasihkc ioints to tile region of .40-eontractivitv in the parameter plane.

C'ave J: For I~ < I) and I?,, 0, Y' 1-j, /1- +~ 13 2 (4 - A) + 1I 0

1+ + --p (4.8)

'ase 4. Fonr /11 < (I anti fill < 0, an argunient similar to that of C asw 2 %hows t hat there are

not ,-coit racti ye niethods% of this tyvpe TVhe region tif A,0 -contrad ivity in the plane of the

parameters (Kw, 0) is the shaded triangle shown in Figure I tot increasing step% (F -1and in

1 igure 2 for decrewasing step% (F=- ) The line /~-it divides this triangle into two

suhiriangles. thle left hand one represents the contribution from C ase I, the right hanld onle

that from Case 3. the uipper left and tower vertices of the A,,-contractivity triangles represent

(idenitically in r). I he lraperoidal Rutle ( R ). defined liv it, ) and thle two-step

Trape/oidal Rile 121 R). having it = /i = 0. 1 he set tof all wecond-order .4-contract ise

methods (both in the G-norni and in the f,- normn), defined It% 12 34) respectively lby the

equivalent relations (3. I5). is representedl bY arcs if parahol;is in Iigujr.s I and 2. joining TR

anti 21 R.

One may -isk ss hether it is possible to select a parit il ir forrmilai front amiong thle

A,,-contractive or the .1-contractive ones whtose t rutncat ion error is itn sonie sense mninimial? Of

course, there is not unique waiy of making such a choice. If the problemn is snmoot h and no

dissipalion is reqitired. thle UR (rest. its one-leg counterpart, the Imrplicit Midpoint Rule) or a

nmethod "close"* to it may he thle i ight choice, while for rough problems% one needs a considera-

ble amount of dissipiation %%hIich one can provide by askinig for strong contractivity at q=

In 11 91 a comprotmise cho ice oft ati .4,-cont ra ttive formuila was mnade b\ minimi iing. over all

.4,)-contract ive formiulas withI p - k- = 2. a hound for thle global truncat iotn error produced if

art A (0-contract ive formuala is implemenrted as a one- leg met hod a rid a pplied to the test

prohlemn i - X(:).l, \(t) !5 -a, a > 0. The calculation was restricted to fixed integration

steps. It resutlted tn finding an All-citnt ract ise t indeed. -I i I -contraict ive I formila oif Mains

type,

2 1 -h( 3 + + I. (4.9)
4 4

which in I191 was referred to as (A2 A unique generali/ition of t (4 9) to arbitrary variable

step% wias then defined by requiring that the %ariable-step version represent a second-order
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accurate Hermite interpolation formula of the same form as (4.9), I.e. with n" -- , = 0, and

it was proved that the variable-step version defined in this manncr, when implemented as a

one-leg method, remained Ao-contractive (in the max norm) for any X(,) 5< 0 and for any step

sequence lh/,, whatsoever. For a given k tile objective function, whose minimization over the

two-parameter set of all Aio-contractive formulas led to (4.9), was I 7; here . is the error

A-
constant and y = 10 - 10 1, is the contractivity constant considered in (3.10) and (4.2).

=0I

both of which are functions of the parameters. It can be shown - although it was not stated in

119] - that formally minimizin. I c. / over all A-contractive formulas in the variable step

case defines the same generalization of (4.9) as does the I-ermite interpolation requirement

mentioned before. The variable step version of (4.9) is defined by (4.19) hereafter in the

form given in 119] which is practical for numerical computation. It is represented in Figures I

and 2 by the point labeled OPA) (for "optimal" , 0 -contractive method), the intersection o

the lines a 0 = [It = 0.

The transformation

w)__(I + c)lI + F )w(1) - Fr(O) I

I- r) + 1 2w(0) - v(0) I

(4 10)

(I -f)2t (O)+(I - 2r)v(0)1

(i -r)+212vs'(0)--io% )-

maps tile triangle representing the Ao-contractive formulas for r = 0 one-to-one onto tie

corresponding triangle for any rv#O. The lines n, = Jio = if = O are insariants of this

transformation anti thus the fixed- and variable-step Nersions of OP,4 andi or the backs at id

differentiation formula (13DF) correspond to one another.

We derived a particular A-contractive p = k = 2 fornula for abllitrary step ratio which

minimizes the objective function I, I /f mentioned in the preccdin), paragraph. I he crror

constant for the p = A = 2 formula associated with (tr. w) turns out to he

3=6 [(I-r') + 4rv-6%]; (4.11)

on the class (3.1I) one finds that locl -- .I-(1 + P2) + 4s v- 3%r1 A calculation %how,,

that I '.(A) I /,(v) takes its global minimum at

S(1+ r);(3 + ) (4.12a)

which is an interior point of the interval defined by (3.1 5b) for all .- I < r < I. 11he vahle
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of w, corresponding to v,,P, via (3.15a), is
I S

- (I + )(7 + 3r + 5 + t '(3 + ) (4.1211

For equal steps (r = 0). the particular A-contractive formula defined h% (4.12) is

n I 5*n + * 2 '*,++.6+ 5 -h + " +6 6 0. (4.13)

It is represented in Figures I and 2 bv the points labeled OPA for ("optimal" .- contractkie

method).

For practical use the family of variable-step p = k - 2 methods studied in Sections 2

and 3 is rewritten hereafter, with n-2 replacing n, in term, (of the forward stcp h,: -t,,. 1

(rather than the average step h = /(h,, + ,,- i) u,;ed in Section 3) and in terms (f the step
2

ratio = r, = h,,//vn. (rather than r = (h 1-/2h). J he relationship hetwceen r and r is

- (4 141

r+I

The class of formulas defined by (3.5) and (3.6) (or (2.18)) is equivalent to

+ 't ,,- + ++ o'1{,- - , = t. (4.15)

where the coefficients

2 2r I.. -h . (1 4 h 1I+r 2(l1+r)

at  - i-r( Il-ht)] /it  (I- 2b (I + h,,-ht) (4.11h)

a2.. I i _ I i P2 =  I h,++ b•h )

I+r 2 2(1- r)i

depend on n via the step ratio r = r,, and possibly via the parameters h, hI which may also

vary with n. The parameters v and o of Section 3 relate it hI'0 h, as follows:

I+rv= - - I.

(4.17)

S= ( -- -- )1 + b).
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The use of b0 and b, is motivated by the fact that for r I (equal steps) one ha

s(z) = a(z( )) = bo + b1z + z and the A-stahility set in the parameter plane (b,. bA) is the

first quadrant. The error constant for the general formula (4.16) is

'3 = - -[(2-3r)-3rho-(2-2r)blI. (4.19)
12r

The variable-step version of the optimal AO-contractive formula (4.10) labeled OPA, for

which bo = 1/r and I, I, is

V2+r + r • (4.19)
","-xn-l-hn 2+2r " 2 +2r_

and its error constant is

3 + r
c3 = - - (4.20)

12r

The constraint (3.15) (respectively (2.34)) for A-contractivity ranlatc, into

ho 2

r- i

r < b, ~I

The a-coefficients of the A-contractive formulas are those of (4.16) and the 1,-coefficients arc

r r(r-2)h _00-=-r + ....
i+r 2(l+r) 2(l+r)

P, = + (4.22)

2 2

- + 2r-Lb h .I+r 2(1+r) 2(I +r)

The error constant for the A-contractive methods is

3 -L[-4 + 4(1 -r)h + 3rb 2. (4.23)
12r

A variable-step extension of the formula OI'A given by (4.13) is defined naturally by the

relation (4.12a). i.e. by requiring that the variable-step version hase the Name minimality
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property as the uniformi-step version. Conidition (-I I 2a) ItanuI)L' into

fi 2r (21 4. 1 (4.241)

the formiulai coefficients are

Oo= -- r
(I 4-r)( 1 +20)

I +2r.

VW -1+2r±2

-r( I +r)

(1 + 2r)

(I +2r)

arnd the error constant is

(1+ r)( I + r + r)~>1 =- -- ------- 4 20)
3r(JI + 2r)~

Another extension of (4. 13) is given bY the requirement that the variable-s tcp version

be A-contractive in the same G-norm as (4.13). tUsing the notations of Section 3. tliis requires

that v' v(r =I( + .3r + F ),(3 + 2ir). resp.

b 1 (r) = -5r'- (42
r(5r + I)

Recall that, when formulas are im plemenried in thle one- leg form, the local tru ncat ion

error consists of two third-order terms. The first of these has the coefficient c, and conies

from the linear constraints (2.10); tlie second ternm iN duie to the nonlinear constraints (2.11)
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5. On variable-step stability

As stated in the Introduction, we seek extensions of uniform-siepl p = k 2 formulas

to arbitrary non-uniform steps whose coefficients al, [I, depend smoothly on Fnear t= 0I

(uniform steps) and which generate bounded discrete solutions when applied to the variable

coefficient test equation (1.12). A necessary condition for a method to have this property is

that it be stable for any geometric step sequence

h=(I+A)I-I, A
= ( + F constant. (5.1)

for which the step ratio is constant:

A A A
r =I + ce F /(2 + F).(5)

and thus the operators p and a are constant. Furthermore let X(, be such that

(I+F q, q constant. Re q !5 0. (5.3)

where, for If = 0. t,, - If,. 1. + FA)'- I Then qj = /,.\(t,,) = constant and [tie

one-leg method generates, bounded solutions iff p(, st '. ( (. 0 'satisfies

It I > I => Re[ p( r)// a('$. r > (. (5 4)

Thus (5.4) is a necessary condition for the variable -step. variaible -cocf ficien fits ~

property studied here. 1 his condition is satisfied iff (3.9)) holds. ,sumc th.4t tln' eovMticn

are mooh eoug inf s tht w ca wrte W IF (0)+ )M Then 'Sir ) > I) 1

obviously satisfied. Furthermore, for arbitrary r, y( r) ! 0 if v( c) ! t, partI of the eutititnfl

(4.0) for contractivity at q = 0. Also, for Itni << 1, s(r) = 4(0-civtO) +- OWU) and

-(F is equivalent to (4.7), one of the constraints for cnrtitvat q = F [nallv. thle
4

condition y(r') !5 4 tSW(v)') becomes --E + v(0) !5 v(O)-2rv 2(0)-2riv(o) + 0(F') (Ir, to

M(E). -E !5-2rv 2 (0-2rw(0) which is true for anly F, I F << 1, iff

4 (0) =1.(0)(.)

2

holds. Condition (5.5). together with (4.7) which for r =0 is wv(0) i implies 1(0) <,
4.

and y(0) '2 0 requires v(O) 2! 0. Thus altogether, for I r << I thc nlccs'.atv condition (5 4)
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for A-stability is satisfied iff both (5.5) and

0 < t-(O ) ,5 I(5 6)
2

hold which for r =-0 are equivalent to (3 1ha), and (3 15ib). rcpccively. defining the

A-contractive formulas.

For arbitrary F 0 0, the formal algebraic A-,tahility condition" (3.9) yield the

constraints derived hereafter. The conditions 6 > 0., 1 .4. anti y > ( yield

V -... . r ( )
2r

I_ _ + (5.8)
- 4

and (

respectively. For any E. the constraint y !5 4iTr takes the form FI(v. w. , > 0. where

4)(v, w 2) 12tv-(I + E )lw-2(l + 2 )v2 + r(3 + fv - (+ -r). (5.10)

It is satisfied iff (v, w, r) > 0. F> 0. The equality 4(v. w. 1)= 0 can be written in the
<_ <

form

it = 12(I + 2)v2 -(3 + c2)v-(l- 2 )212rv-(l + F)H (5.11)

a hyperbola whose center lies at K = (2 + r2 + r - )/4F = (1 + 1 2)/2r and whose two

asymptotes are v = (I + r 2 )/2c and w= [(l +F 2)/2rlv + [(- 2, )/241. This hyperbola

passes through the points (w = , v 2 and (K represent-

ing the Trapezoidal Rule (TR) and the two-step Trapezoidal Rule (2TR), respectively. !

The hyperbola subdivides the (w, v)-plane into a connected set containing the minor

axis and into a disconnected set consisting of two branch sets and containing that part of the

major axis lying beyond the vertices. For E > 0, the "good" region defined by 4) > 0 is the

disconnected set. Because the first asymptote is the borderline case of condition (5.7), only

one of the branch sets is "allowed" by condition (5.7) and all points of that set do satisfy that

condition. Consequently, for r > 0 the set of all points satisfying the formal A-stability

conditions is the (bounded) intersection of (5.8), (5.9) and 4) > 0. It is represented (for

r + 1/2) by the shaded region of Fig. 3 which contains the arc of all A-contractive
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methods. For comparison with the other figures. the AO-contractivity triangle is also shown.

For e < 0. the "good" region 4) < 0 is the connected set. The constraint (5.7) is implied by

(5.9) and thus the active constraints are again the same. For t= - /2, their (unbounded)

intersection is represented by the shaded portion of Fig. 4 which again contains the

A-contractivity arc.

Figures 3 and 4 indicate that, for F near zero. the arc of the A-contractive formulas

nearly coincides with the boundaries of the shaded regions for F > 0. resp. i < 0. Hencc

assuming smoothness for f near zero, only the methods along the arc are admissible, as we

concluded above. However, we have not shown that a non-smooth strategy would not work.

Note that the BDF . which for F = + 1/2 is (9/8. 3/2) and for r = -I/2 is (I 'X.

1/2). lies in the "stable set" only for F !5 0. It was mentioned in (191 that for the test

problem defined by (1.12) and (5.1)-(5.3) with M(t) _< 0. AO-stability of the B I)F was lost for

r > I + v2 (, > vJ2/(2 + V'2)). Indication% for instability at smaller step ratios (r > 1.2)

were given in [1] for . = ,x. A constant, complex, in the ense that for such ratios a sufficient

condition for contractivity in a polygonal norm was violated. Here it is shown that for sonic

complex A(t) (oscillatory problems) the BDF actually becomes destabilized by the problem

defined by (1.12). (5.1) - (5.3) with r = I + C for any F >.

WI
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/0BDF

1/4

0>
li?,

0 0
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___ __ ______IOPAoICA2) _

A-CONTRACTIVE FORMULAS
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a 0 -2TR - > 0

// I (~ 0/~0
____ 0
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Figure I, A0-contractive and A-contractive formulas for incrcasing stcps
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lal: 0 ,r 0  ,--2TR

Figure 2. A0-contractivc and A-contractivc rormuhts fo~r decrei'.ing %tepcps
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8>O#4' v<5/4 BDF (9/8,3/2)

Av-A 0 -CONTRACTIVE
I FORMULAS

3/- :5&k TR j -

-4-CONTRACTIVE/
A-SABL FORMULAS

FORMULAS /0

A OPA /

A,

1//

Figure~ 3. 4-stablc and A -contractive formulias for itncrcasing steps
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iv OBDF (1/8,1/2)

00/>~ /0' 7 TBLE FORMULAS_

1/4 .C~.> On-

A CONTRACTIVE .1

00

A-CONTRACT IVE
FORMULAS

-1/2 a:0y0

Figure 4. A-stable aind A-contractive formnulas for decreaising steps,
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